RTP PACKETIZATION OF MPEG-4 ELEMENTARY STREAMS

Matthias Ohlenroth and Hermann Hellwagner

Department of Information Technology
University Klagenfurt
Universitatsstralie 65-67
A-9020 Klagenfurt
Austria

ABSTRACT

Multimedia streaming is becoming increasingly popular. The mul-
timedia standard MPEG-4 was designed to support scenes of dif-
ferent levels of complexity and applications with low bandwidth
up to very high bandwidth requirements. Scalable video encod-
ing is supported as well. This allows MPEG-4 streaming soft-
ware to adapt video quality dynamically in the network to cur-
rently given QoS conditions. We evaluate packetization modes
designed to transport MPEG-4 elementary streams over RTP con-
nections, based on an implementation of an MPEG-4 video server
and a demo client. Suitability of the packetization modes for video
stream adaptation in the network nodes is discussed.

1. INTRODUCTION

Multimedia presentations including digital video are becoming
ever more popular as the Internet evolves. This includes live broad-
casting of videos, live interactive video and the delivery of pre-
recorded video. Two basic delivery techniques can be used:

e download and play, and
e streaming.

In the first case, the whole video must be downloaded
and stored locally. This can be a time-consuming and space-
consuming process. Streaming on the other hand allows a client
to start playing as soon as a sufficient portion of the video has
been received. This mode minimizes the time-consuming down-
load process prior to the playing phase and the local storage re-
quirements. But it depends heavily on the network conditions dur-
ing play-back. The streaming mode requires certain quality of ser-
vice (QoS) guarantees from the network it uses. Unfortunately, the
heterogeneous nature of the Internet does not allow QoS contracts
to be worked out. Hence, transmission parameters like bandwidth,
packet delay, and jitter depend on the current network load and
vary heavily over time. Because the Internet relies in most parts
on best-effort resource scheduling techniques, bursty network traf-
fic and congestion can be observed. Two solutions are possible:

e The client-server pair uses appropriate protocols like RTP/
RTCP [1] to measure network QoS parameters. Using these
measurements, the server adjusts the transmission band-
width. Consequently the perceived video quality on the
client side varies over time, especially sudden or frequent
video quality changes are possible. This method is called
non-transparent video scaling as it involves both client and
server [2].

e The second method shifts the video adaptation task from the
server into the network because the network routers have
timely knowledge about current QoS situations. This is
called transparent video scaling because it does not involve
the end nodes in the quality adaptation process [2].

Video adaptation seems promising in a number of situations.
First, even in the case of heterogeneity of network equipment and
connectivity, video data can be adapted and transmitted at a suit-
able rate. Second, variations of network traffic can be monitored
and used to adapt video data instantly. Third, adaptation tech-
niques can be used to scale video data to a wide variety of client
end systems without special server support. End systems may be
multimedia workstations, PDAs, or even mobile phones. Each of
these devices has different requirements on the media stream be-
cause of their specific processing power, buffering capabilities, and
displays. Additionally, the load on end systems may vary depend-
ing on the applications currently running.

Our research focuses on the recent multimedia transfer stan-
dard MPEG-4. MPEG-4 [3] allows the construction of audio-
visual scenes consisting of separate audio and video objects. Each
object is encoded separately into one or more so-called elementary
streams (ESs). Scalable encoding can be used for video objects
such that the decoder can produce decoded objects with different
quality depending on the number of elementary streams used for
decoding. The transport of elementary streams is based on the no-
tion of access units (AUs). Access units are the smallest units to
which time information can be attributed. These may be video
frames.

Two different mechanisms to transfer MPEG-4 sessions over
networks exist:

e The delivery multimedia integration framework (DMIF,
Part 6 of MPEG-4) [4] provides a generic interface to phys-
ical transfer and storage. One implementation that is based
on the UDP protocol has been developed at the University
of British Columbia [5].

e An RTSP/RTP based transport mechanism is developed in
a joint effort by IETF and MPEG.

To support the second method, the following specifications are
standardized or under development:

e RFC 3016. This specification describes RTP payload for-
mats for transport of MPEG-4 audio and visual bitstreams
without using MPEG-4 Systems streams.

e Draft-ietf-avt-mpeg4-multiSL-04.txt. This payload for-
mat specification may be used to transport any MPEG-
4 elementary stream with or without MPEG-4 Systems
streams.

o Draft-ietf-avt-mpeg4-simple-02.txt. This payload format
specification is a simplified version of the previous one.
Therefore it is not discussed here.

e Draft-curet-avt-rtp-mpeg4-flexmux-02.txt. This specifi-
cation allows the transport of FlexMux streams over RTP.
FlexMux streams are interleaved elementary streams.

Utilizing RTP-based transport, we are developing an end-to-
end MPEG-4 video streaming solution that incorporates nodes ca-
pable of scaling video streams during transmission. Therefore we
investigated the mapping of MPEG-4 elementary streams onto the
RTP transport protocol both conceptually and practically. The ex-
periments done are based on a video streaming solution presented
in this paper. It consists of a video server and a client, both are
able to use the three mapping modes mentioned above.

The paper is organized as follows. First, the mapping meth-
ods to transport MPEG-4 data over RTP are introduced. The next
section introduces our video server. The following sections com-
pare the mapping modes both on a conceptual and on a practical
level and discuss their usability in a streaming environment with
adaptivity.

2. PAYLOAD SPECIFICATION RFC 3016

RFC 3016 [6] defines a payload format for carrying MPEG-4 audio
and MPEG-4 visual bitstreams without using MPEG-4 Systems.
It specifies the use of RTP header fields and fragmentation rules
for the mapping of MPEG-4 audio and visual streams onto RTP
packets. RFC 3016 does not define additional header structures
because MPEG-4 streams contain error resilience information that
can be used for recovering corrupt header data.

The fragmentation rule recommends not to map more than one
video object plane (VOP, usually a frame) into an RTP packet. In
this case, the timestamp uniquely indicates the VOP time framing.
Nevertheless, concatenating multiple VOPs in an RTP packet is
allowed. This helps reducing overhead in case a VOP contains
only a small number of coding blocks as may occur in arbitrary
shaped VOPs. RFC 3016 recommends that a single video packet
is sent as a single RTP packet.

3. MULTI-SL PACKETIZATION

This payload format, defined by [7], supports two kinds of termi-
nals:

e Terminals that implement the MPEG-4 specification in-
cluding MPEG-4 Systems.

e Terminals that implement only parts of the specification.
One example would be a terminal that implements only
MPEG-4 Visual but not MPEG-4 Systems.

In case MPEG-4 Systems is used, the initial object descriptor
(10D) must be sent to the receiver by out-of-band means. This
may be done using RTSP [8] and SDP [9].

Depending on the terminal implementation, the synchroniza-
tion layer (SL) defined by MPEG-4 Systems may or may not be
used. In both cases, access units or fragments thereof are mapped

onto RTP packets. Compatibility with RFC 3016 can be achieved
if the synchronization layer is not used. But even if MPEG-4 Sys-
tems is not implemented, fields like the decoding timestamp of
the SL may be of interest for the application. Consequently the
SL header is split into generally useful information and MPEG-4
Systems related data (see figure 1). These parts are called pay-
load header and remaining SL header (RSLH). SL header fields are
mapped onto RTP header fields, the payload header and the RSLH.
Payload header and RSLH may consist of multiple sections if the
RTP packet encapsulates multiple AUs or AU fragments.

extended framing and |AU or AU
timing information |fragment
sLconfigDescriptor|
sy,
e,
eﬁpsex

SL Packet
OAN[SL Packet|[sL Packet /////
Header |Payload

Remaining SL‘SL Packet

Payload

Header |Header

RTP Packet
Header Payload

Figure 1: Mapping of AUs into SL packets and SL packets into
RTP packets

4. RTP PACKETIZATION OF MPEG-4 FLEXMUX
STREAMS

This payload format [10] defines the mapping of MPEG-4 Flex-
Mux PDUs into RTP packets. The FlexMux tool supports the
mapping of AUs encapsulated in SL packets of a set of elemen-
tary streams into one FlexMux stream. This mapping can be static
(simple mode) or dynamic (MuxCode mode). In the latter case,
configuration information must be sent to the receiver when the
mapping changes. FlexMux configuration information may be
transferred by out-of-band means. An integer number of FlexMux
packets is mapped into one RTP packet payload. The size of Flex-
Mux packets should be set such that the resulting RTP packet is
not larger than the path-MTU.

5. RTSP/RTP BASED STREAMING VIDEO SERVER

Our goal was to implement an RTSP/RTP based MPEG-4 video
server that can be used as a basis for a complete streaming envi-
ronment and for experiments at the elementary stream level. The
design of the server (see figure 2) is multi-threaded because it sim-
plifies event handling and the RTP library used [11] can be decou-
pled from other components. Unfortunately the RTP library was
not thread-safe. Hence, we had to add a wrapper layer on top of
the RTP layer.

We use one thread to handle RTSP requests from multiple
clients and to manage RTP connections through the session layer
and the stream layer. MPEG-4 ES delivery is handled by dedi-
cated threads. These threads read access units from the requested
file, fragment them and packetize them using one of the described
methods. This model simplifies the server design because han-
dling of different streams can be decoupled and CPU utilization is
managed by the operating system. An alternative solution would
be to implement an event handling module that allows to schedule
packet transmission requests for all streams inside the application.
This would increase implementation complexity, but it could po-
tentially reduce the overhead due to thread scheduling by the op-

erating system. With this implementation we are able to compare
packetization modes.

RTSP Server Thread

Session Layer ‘

‘ Session] Session N

j \Stream Laye[/ l ‘
Stream 1] [- Hstrleam N

‘- — >

MPEG-4 ol Fragmentation
File < - -
Library £ sL Packetization
& |rrc 3016 :
MuTtisL||FlexMux
Thread-safe Layer ——
port Session 1] RTP Library [session N

Figure 2: Design of the streaming video server

6. COMPARING PACKETIZATION MODES

To support transparent scaling, we need to carry control informa-
tion that allows to steer the scaling performed by network nodes
together with media data. Routers with limited processing capa-
bilities use this information to intelligently drop packets. Control
information must be accessible to these nodes without the need
to decode complex protocols. More powerful nodes may perform
complex transcoding tasks. Due to their processing power they
are able to handle complex control information streams that de-
scribe video stream scaling properties at AU level. Such a stream
may be a BSDL stream (Bitstream Syntax Description Language)
[12]. Hence, a protocol is needed that allows to carry light-weight
control information encoded into headers for fast access together
with separate control streams and probably multiple related media
streams. Furthermore, efficient access to configuration data like
the decoder configuration, the SLConfigDescriptor and protocol
parameters is needed by network nodes to perform transcoding.

Table 1 compares the MPEG-4 packetization modes RFC
3016, draft-ietf-avt-mpeg4-multiSL-04.txt (MultiSL) and draft-
curet-avt-rtp-mpeg4-flexmux-02.txt (FlexMux) presented so far.
Two modes support MPEG-4 Systems streams (BIFS stream,
IPMP stream, OD stream) and one mode supports multiplexing
access units from several streams into one FlexMux stream. This
mechanism may be used to interleave video streams with control
information streams. The RTP header extension mechanism may
be used to carry light-weight control information. Unfortunately,
this forces even routers to parse the RTP header because the loca-
tion of this area is not fixed. The packetization modes discussed
require different amounts of information to be present before RTP
packets can be decoded. While RFC 3016 requires no informa-
tion, the MultiSL packetization draft needs the SLConfigDescrip-
tor and further configuration data to specify the payload header and
the RSLH section. The FlexMux mode requires the StreamMap-
pingTable (simple mode) or the MuxCodeTable (MuxCode mode)
to be present. The payload modes generate different amounts of
header information besides the required RTP header.

We list the size of the headers (including RTP header) for a
synchronization layer containing composition time stamp, decod-

RFC 3016 MultiSL FlexMux
Supported Audio, Video Audio, Video, Audio, Video,
Stream types Systems Systems
ES to RTP Separate RTP Separate RTP Multiplexing
mapping sessions sessions onto one RTP
session
Transport of Separate RTP Separate RTP Multiplexing
control session session onto one RTP
streams session
Information Nothing SLConfigDe- StreamMap-
required to scriptor and pingTable,
decode packet configuration MuxCode-
parameters Table if Mux
Code mode
Access to data | Directly after Decode Two bytes
(i.e., video RTP header payload after RTP
packet) header and header,
RSLH section decode packet
if MuxCode
mode
Header 12 bytes 16 bytes 15 bytes / 23
overhead bytes
Packetization 18.0 us 19.9 us 19.6 us
Depacketiza- 21.4 us 23.4 us 20.1 us
tion

Table 1: Features of packetization modes

ing time stamp (32 bits each) and a flag that signals the end of an
access unit. MultiSL packetization mode uses 16 bits for the Size-
Length field and 8 bits for the DTSDelta field. Using these con-
figurations, we have measured the time to packetize and depacke-
tize the RTP packet payload. Our tests are performed on an AMD
Athlon 1 GHz CPU running the operating system Linux. Results
are shown in table 1. They do not differ significantly except when
fragmentation for FlexMux packetization is in use. In this case
the synchronization layer for fragments following the first one is
smaller and the packetization overhead reduces to 10.7 us. RFC
3016 support has been implemented using the MultiSL code and
appropriate configuration information. Hence, it might be possible
to reduce the overhead for this mode if an optimized implementa-
tion is used. Implementation complexity is high for MultiSL and
medium for FlexMux and can be very low for RFC 3016. Typi-
cal processing for one AU including reading from file and delivery
to the network without further fragmentation takes approximately
103 us. Hence, packetization takes approximately 20 % of the
time required to process one AU.

7. USING PACKETIZATION MODES IN STREAMING
ENVIRONMENTS WITH SCALING SUPPORT

BSDL seems to be a promising approach to transport scaling prop-
erties (i.e., metadata) closely related to video streams through the
network consisting of proxy nodes and routers. To accomplish the
close relationship between media data and metadata, the FlexMux
packetization mode provides the required functionality. It allows
access units from different streams to be multiplexed onto one RTP
connection. The simple mode of the FlexMux packetization draft
seems more promising than the MuxCode mode because the band-
width allocated to different streams is not fixed and the overhead to
decode FlexMux streams at router nodes is lower. Additionally, the
MuxCode mode requires configuration information to be carried

by out-of-band means. In this case, a router would need special
mechanisms to read and parse separate configuration connections
between server and clients. Using the simple mode, one would
need a configuration table that documents the (fixed) mapping be-
tween elementary stream IDs and FlexMux channels (which are
identified by an index value inside a FlexMux PDU). Hence, even
in this case out-of-band communication might be necessary. This
situation could be changed if some of the index values were used
in a special way. The range of 238 index values assigned to simple
mode seems rather large for practical applications that would mul-
tiplex streams. Hence, it should be possible to use some of them
to either signal a special in-band configuration stream (one stream
would suffice) that can be parsed even at router nodes or to assign
a set of index values to predefined stream types that must be parsed
by network nodes (e.g., BSDL streams).

In the first case, the configuration stream carries packets that
allow a network node to identify the type of the other streams and
relations between them. Especially it should be possible to identify
video streams and BSDL streams and the relations between sets of
both. It is expected that one FlexMux session is assigned to a set of
related video streams (e.g., base layer ES and enhancement layer
ES for one MPEG-4 object) and the corresponding BSDL stream.

The second method could be used if special mappings between
FlexMux index values were established. l.e., a video stream is as-
signed index value 0 and the corresponding BSDL stream is as-
signed an index value 0+128. Hence, all streams with an ID larger
than 128 are identified as BSDL streams and the connection to the
corresponding video stream can be established. The methods dis-
cussed here are not specific to video streams. They may be used
with other stream types as well.

8. RELATED WORK

[5] and [13] describe DMIF-based streaming solutions for MPEG-
4. Both implementations carry SL-packetized streams and use
TCP for session control. [5] maps SL packets onto UDP. The sec-
ond project uses RTP/UDP.

Design studies for solutions without DMIF have been pub-
lished by Liu et al. [14] and Wu et al. [15]. Both concepts use
SL packets and RTP/UDP. FlexMux is optional for the first pro-
posal, but mandatory for the second. [14] supports MultiSL too.
The second concept suggests source rate control via RTCP-based
receiver feedback.

Further open source projects exist. These projects do not con-
sider transparent scaling.

9. CONCLUSIONS

We have introduced methods to map MPEG-4 elementary streams
onto RTP packets. These methods differ mainly in the amount of
control information that may be associated with ES data and their
ability to multiplex several ESs onto one RTP packet stream. We
have implemented all three methods and compared implementa-
tion effort and runtime needed to execute packetization and de-
packetization code. Furthermore, we have evaluated mechanisms
to couple ES data with metadata that is necessary to steer media
adaptation inside the network. Although the needs of powerful net-
work nodes can be satisfied by RTP together with FlexMux pack-
etization, better support for router nodes is required. Hence, we
will investigate if it is appropriate to replace these protocols by a

new solution that allows to seamlessly integrate router support and
stream multiplexing while preserving the useful properties of RTP.

10. REFERENCES

[1] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“RTP: A Transport Protocol for Real-Time Applications
(RFC 1889),” Jan. 1996.

[2] K. Nahrstedt, “Quality of Service in Networked Multimedia
Systems,” in Handbook of Internet and Multimedia Systems
and Applications, B. Furht, Ed. 1999, pp. 217-252, CRC
Press.

[3] R. Koenen, “Overview of the MPEG-4 Standard. ISO/IEC
JTC1/SC29/WG11 N4030,” March 2001.

[4] 1SO/IECJTC1/SC29/WG11, “ISO/IEC 14496-6:2000(E) In-
formation technology — Coding of audio-visual objects — Part
6: Delivery Multimedia Integration Framework (DMIF),”
October 2000.

[5] Y. Pourmohammadi, K.A. Haghighi, A. Mohamed, and
H. M. Alnuweiri, “Streaming MPEG-4 over IP and Broad-
cast Networks: DMIF Based Architectures,” in Proceedings
of the 11th International Packet Video Workshop, 30 April -
1 May 2001, Kyungju, Korea, May 2001.

[6] Y. Kikuchi, T. Nomra, and S. Fukungaga, “RTP Payload For-
mat for MPEG-4 Audio/Visual Streams (RFC 3016),” Nov.
2000.

[7]1 A. Basso, M.R. Civanlar, P. Gentric, C. Herpel, Z. Lifshitz,
Y. Lim, C. Perkins, and J. van der Meer, “RTP Payload
Format for MPEG-4 Streams. Internet Draft (draft-ietf-avt-
mpeg4-multiSL-04.txt),” Feb. 2002.

[8] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time
Streaming Protocol (RTSP) (RFC 2326),” Apr. 1998.

[9] M. Handley and V. Jacobson, “SDP: Session Description
Protocol (RFC 2327),” Apr. 1998.

[10] J. van der Meer, D. Curet, E. Gouleau, S. Relier, C. Roux,
P. Clement, and G. Cherry, “RTP Payload Format for MPEG-
4 FlexMultiplexed Streams. Internet Draft (draft-curet-avt-
rtp-mpeg4-flexmux-02.txt),” Nov. 2001.

[11] D. Rubenstein, J. Lennox, J. Rosenberg, and H. Schulzrinne,
“Bell Labs/Columbia/UMass RTP Library Internal Function
Descriptions,” Tech. Rep. UM-CS-1999-076, Nov. 1999.

[12] S. Devillers, M. Amielh, and T. Planterose, “Bitstream Syn-
tax Description Language (BSDL). Response to the Call for
Proposals on MPEG-21 DIA. ISO/IEC JTC1/SC29/WG11
MPEG/M8273,” May 2002.

[13] A. Basso, S. Varakliotis, and R. Castagno, “Transport of
MPEG-4 over IP/RTP,” in Proceedings of the 10th Inter-
national Packet Video Workshop, 1 - 2 May 2000, Cagliari,
Italy, May 2000.

[14] H. Liu, X. Wei, and M.E. Zarki, “A Transport Infras-
tructure Supporting Real Time Interactive MPEG-4 Client-
Server Applications over IP Networks,” in IWDC 2001,
LNCS2170. 2001, pp. 401-412, Springer-Verlag.

[15] D.Wu, Y.T. Hou, W. Zhu, H.-J. Lee, T. Chiang Y.-Q. Zhang,
and H.J. Chao, “On End-to-End Architecture for Transport-
ing MPEG-4 Video over the Internet,” IEEE Transactions
on Circuitsand Systems for Video Technology, vol. 10, no. 6,
pp. 923-941, Sept. 2000.

